

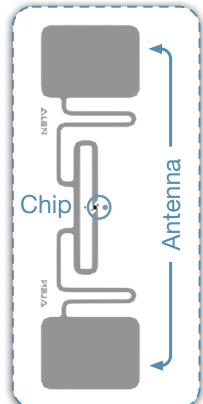
RF-DNA: Large-Scale Physical-layer Identifications of RFIDs via Dual Natural Attributes

Qingrui Pan, Zhenlin An, Xueyuan Yang,

Xiaopeng Zhao, Lei Yang

RFID becomes Increasingly Important

Supply Chain Electronic Passport Mobile Payment


• Radio Frequency IDentification (RFID) tags are becoming

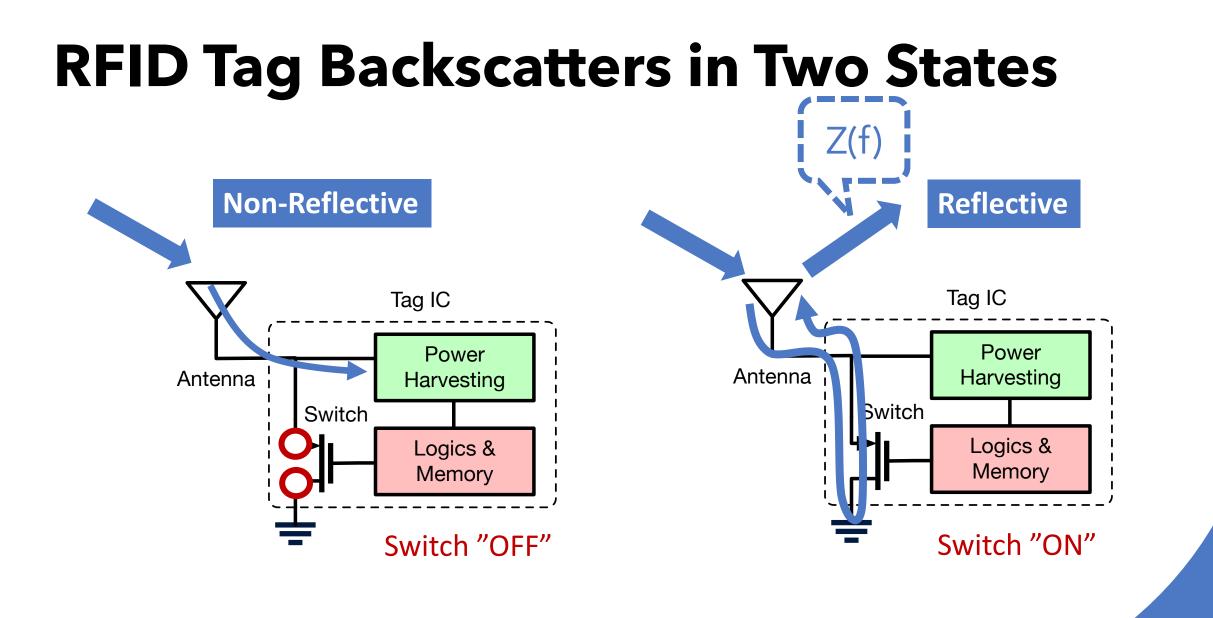
in Security of RFIDs attract more attention.

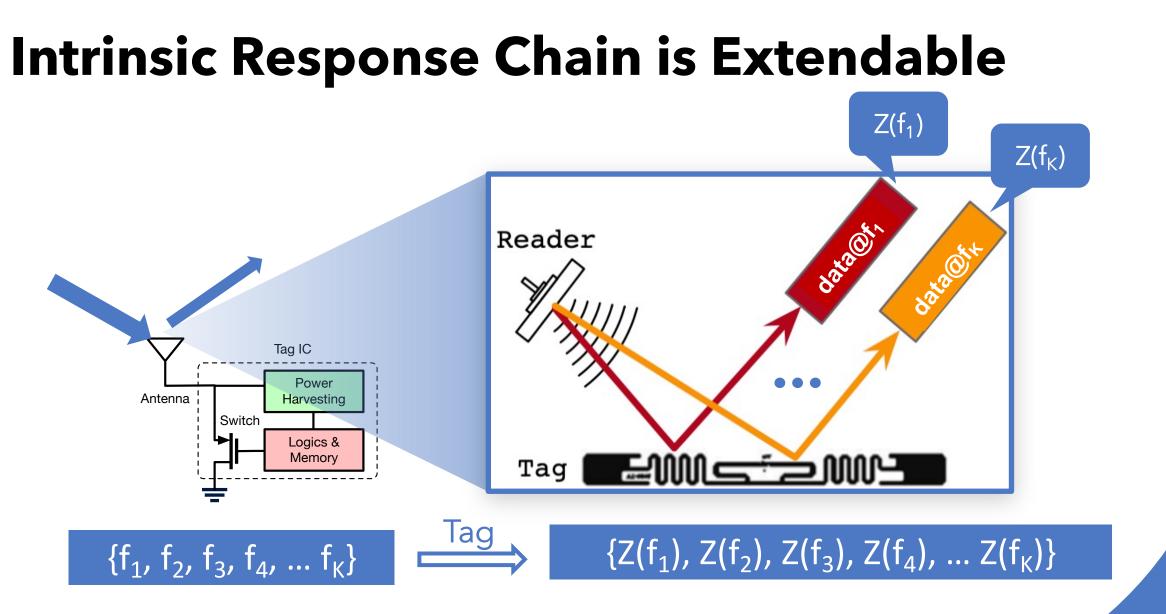
• According to the report, 17.5 billion RFID tags are sold in 2018

Protocol-based Solutions are NOT Practical

- Authentication Protocol
 - Checking stored data and identifying tags
 - Limitation: vulnorable to counterfeiting attacks
- Cryptographic Protocols
 - Sending cipher-text instead of plaintext
 - Limitation: demanding extra power and computation

Previous Fingerprints only on a Small-Scale

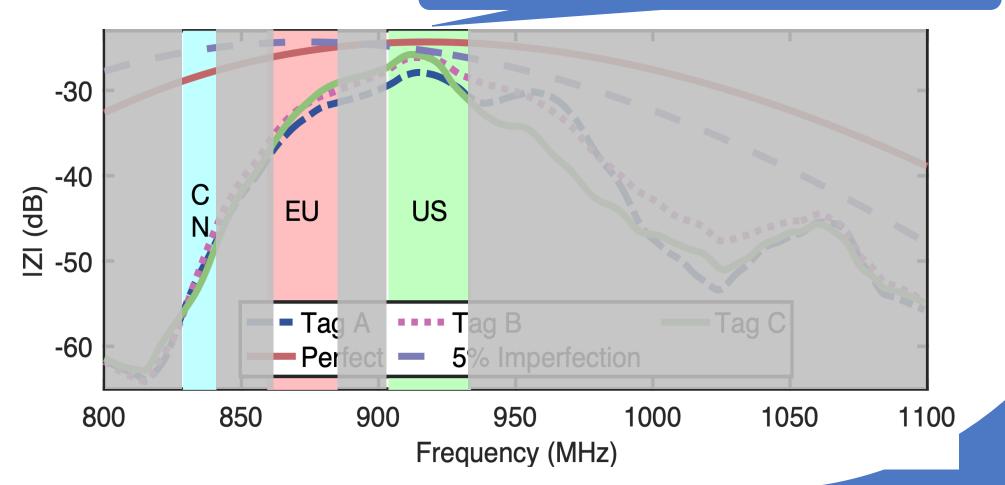

Solution	Fingerprint(s)	Components	Scale (#)	Accuracy	Time
ETH	TIE+ABP	Antenna+IC	50	98.7%	20ms
Geneprint	ExTIE+PSD	Antenna+IC	150	99.68%	20ms
TagPrint	Phase	Antenna	2,000	80.39%	20ms
Eingerprint	Persistence Time	IC	200	91.60%	60s


Previous Fingerprints only on a Small-Scale

Solution	Fingerprint(s)	Components	Scale (#)	Accuracy	Time
ETH	TIE+ABP	Antenna+IC	50	98.7%→ 26.08%	20ms
Geneprint	ExTIE+PSD	Antenna+IC	150	99.68%→ 56.08%	20ms
TagPrint	Phase	Antenna	2,000	80.39%→ 24.93%	20ms
Eingerprint	Persistence Time	IC	200	91.60%→ 77.80%	60s
Ours	RF-DNA	Antenna+IC	16,000	95.98%	20ms

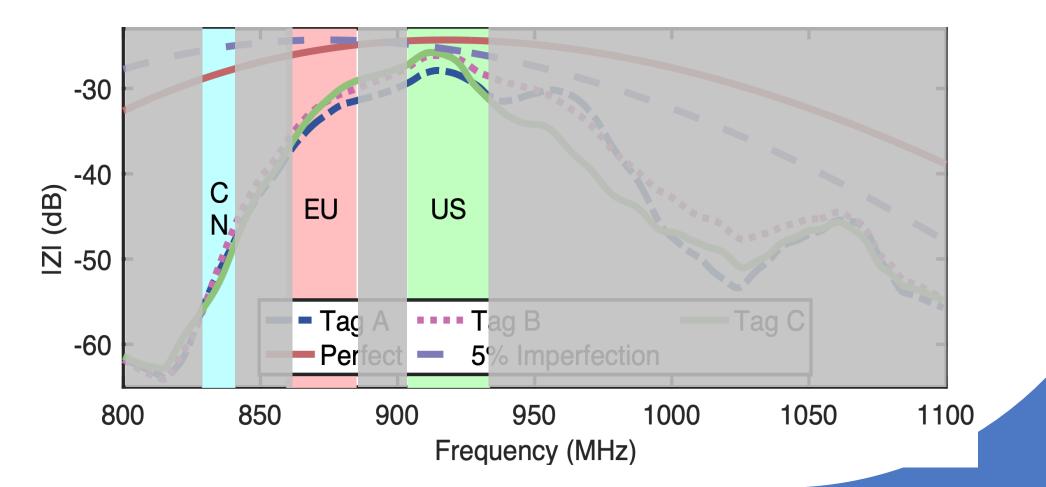
Our fingerprint (RF-DNA) works in a large-scale dataset with high accuracy.

Why our fingerprint works?

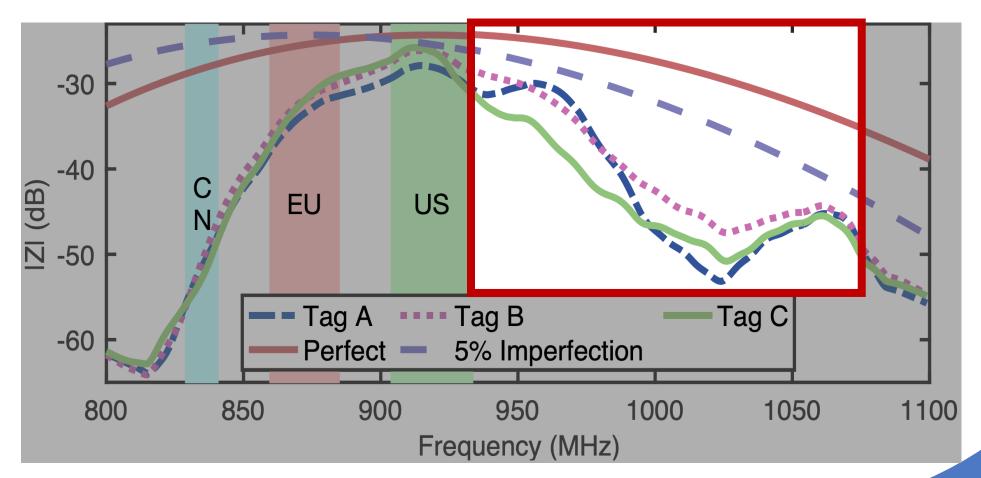

Chain of response can be **extended** by utilizing more frequencies.

RFID working frequency bands are narrow

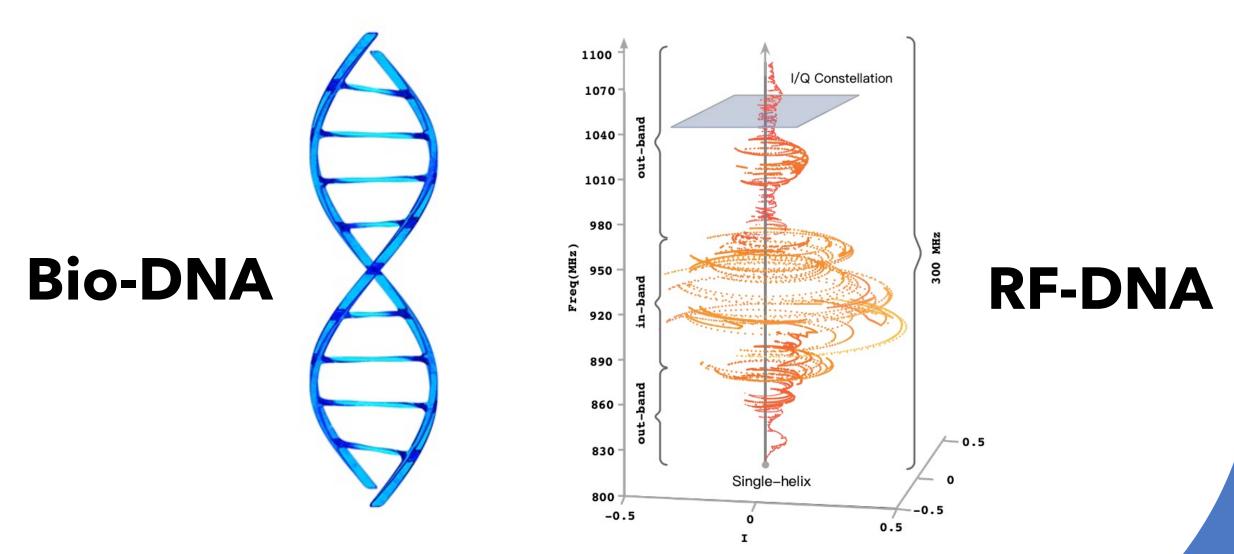
Previously proposed fingerprints are exploited at in-band frequencies


assigned to an RFID system.

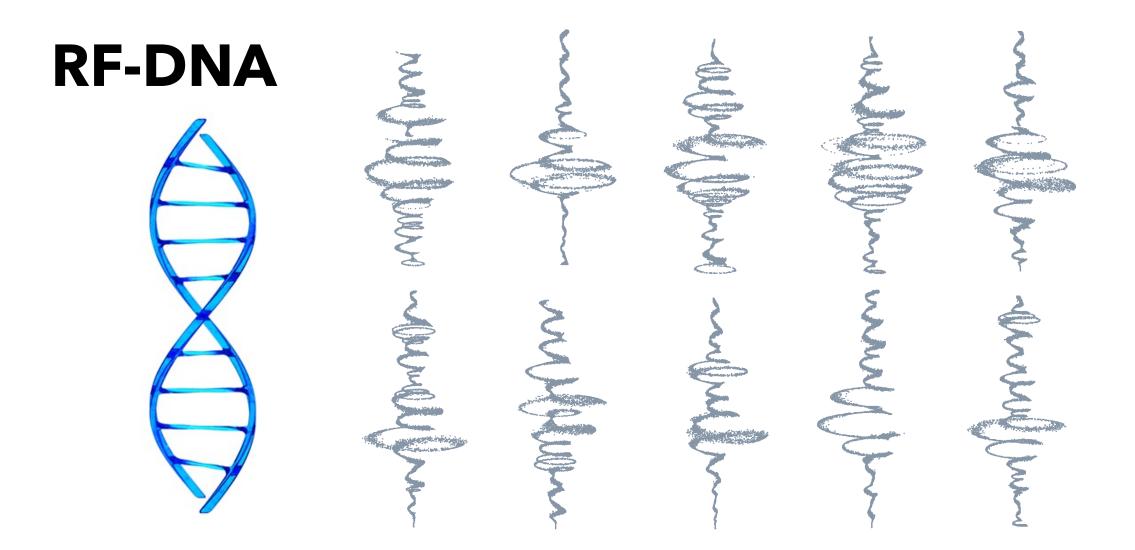
Previous Fingerprints Work Here!


Frequency Agnostic Phenomenon

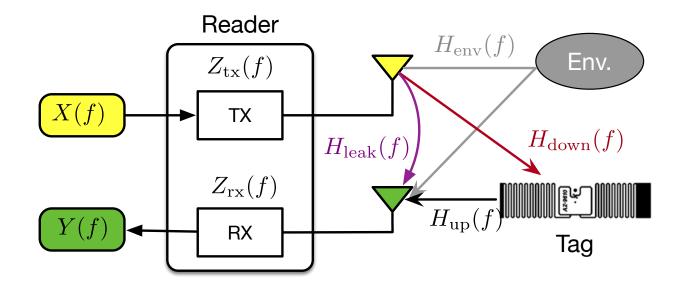
RFID Tags backscatter in both **in-band** frequencies and **out-of-band** frequencies


Frequency Agnostic Phenomenon

Out-of-band intrinsic responses are more **distinguishable** than intrinsic In-band responses.



RF-DNA


RF-DNA: a chain of pairs of I and Q components of a tag's **intrinsic responses** challenged at 300 MHz wide band.

Ten RF-DNA examples profiled from **ten** RFID tags with different models

Challenge 1: how to extract context-free intrinsic response?

Problem: tag response is NOT context-free!

Context involves:

- surrounding response
- distance

.

- transmission power
- self interference

Non-reflective: $Y_0(f) = X(f)Z_{tx}(f) (H_{leak}(f) + H_{env}(f)) Z_{rx}(f)$

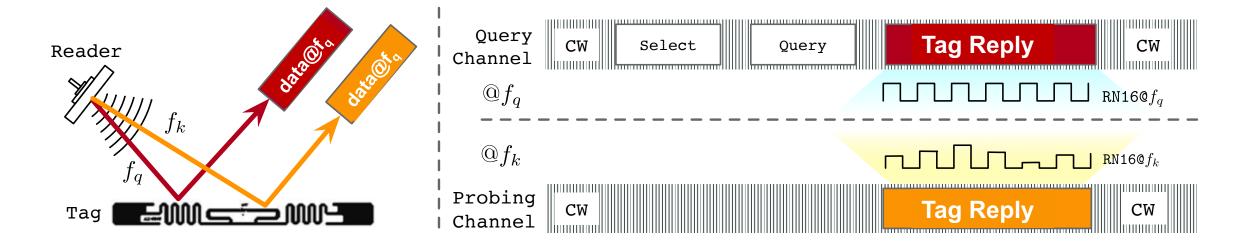
Reflective: $Y_1(f) = Y_0(f) + X(f)Z_{tx}(f)H_{up}(f)Z_{tag}(f)H_{down}(f)Z_{rx}(f)$

Solution: Context-free DNA Extraction

Step 1

Eliminating impact of CW and reader

$$\begin{aligned} \xi(f) &= \frac{Y_1(f) - Y_0(f)}{Y_0(f)} = \frac{\overline{X(f)Z_{\text{tx}}(f)Z_{\text{tx}}(f)} - Z_{\text{tx}}(f)H_{\text{up}}(f)Z_{\text{tag}}(f)H_{\text{down}}(f)}{\overline{X(f)Z_{\text{tx}}(f)} - Z_{\text{tx}}(f)} \\ &= \frac{H_{\text{up}}(f)H_{\text{down}}(f)}{H_{\text{leak}}(f) + H_{\text{env}}(f)} Z_{\text{tag}}(f) \end{aligned}$$

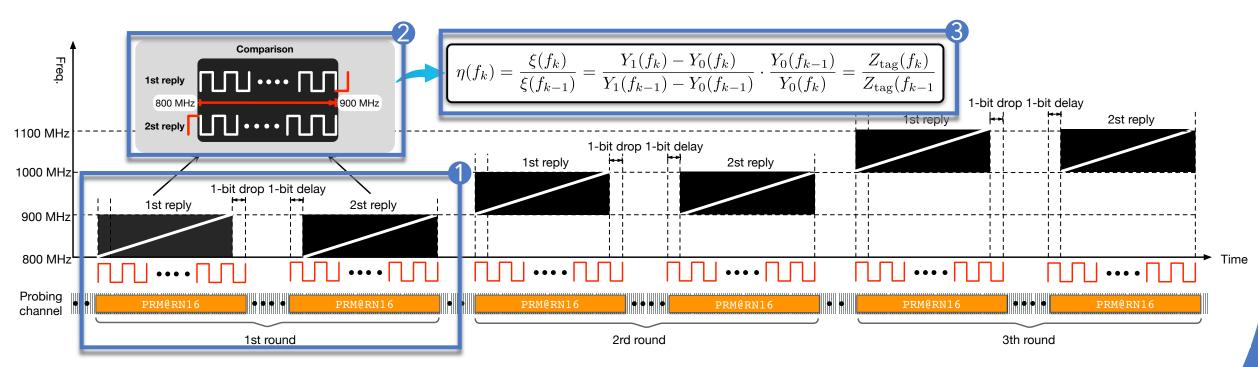

Step 2

Eliminating impact of path-related variables

$$\begin{split} \eta(f_k) &= \frac{\xi(f_k)}{\xi(f_{k-1})} = \frac{Y_1(f_k) - Y_0(f_k)}{Y_1(f_{k-1}) - Y_0(f_{k-1})} \cdot \frac{Y_0(f_{k-1})}{Y_0(f_k)} \\ &= \underbrace{\overline{H_{up}(f_k) H_{down}(f_k)}}_{H_{leak}(f_k) + H_{env}(f_k)} \cdot \underbrace{\frac{H_{leak}(f_{k-1}) + H_{env}(f_{k-1})}{H_{up}(f_{k-1}) H_{down}(f_{k-1})}}_{Z_{tag}(f_{k-1})} \cdot \frac{Z_{tag}(f_k)}{Z_{tag}(f_{k-1})} \\ &\approx \frac{Z_{tag}(f_k)}{Z_{tag}(f_{k-1})} \end{split}$$

Challenge 2: how to profile largescale RF-DNAs instantly?

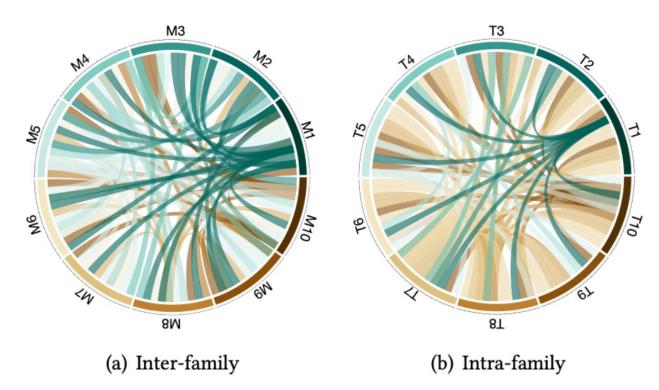
Problem: Single-tone Profiling is Time-consuming!



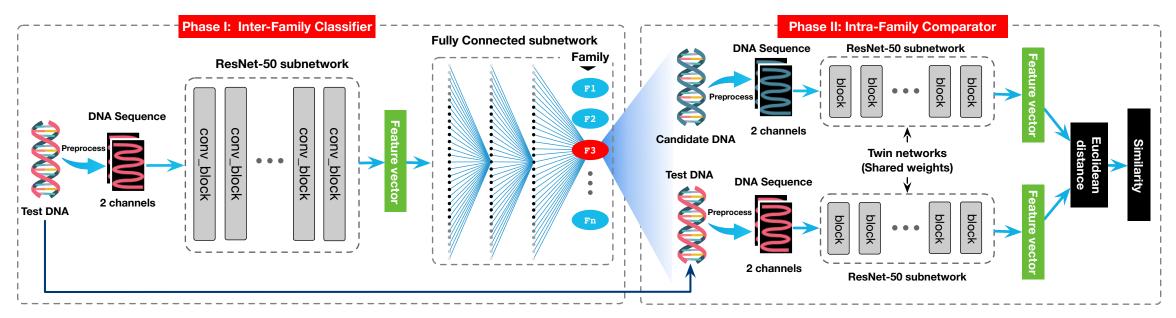
Two channels are utilized:

- The query channel: at in-band frequency f_q is to power up the tag
- The **probing** channel: at targeting frequency f_k to acquire the corresponding intrinsic response

It takes 6.7 hours to acquire 300MHZ response for each single tag!

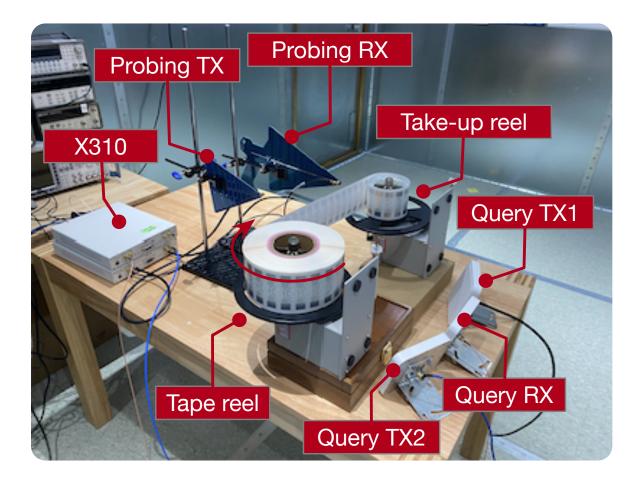

Solution: Chirp-based Profiling

- Profiling RF-DNA across 300MHz in six times by sending chirp in probing channel
- Time cost turns from 6.7 hours to 120.4 ms


Challenge 3: how to match RF-DNAs with RFIDs?

Problem: Similarity is Hierarchical!

RF-DNAs from **different families** are much more **distinguishable** than those from the same family


Solution: Two Phase Neural Networks

- (Phase I) Inter-Family Classifier: To classify a DNA sequence into a model-based group called family by RestNet-50 network followed by a three-layer fully connected network
- (Phase II) Intra-Family Classifier: To discriminate a tag from others in the same family by the popular neural network called siamese network which aims to compute the similarity of two inputs

Implementation & Evaluation

Implementation

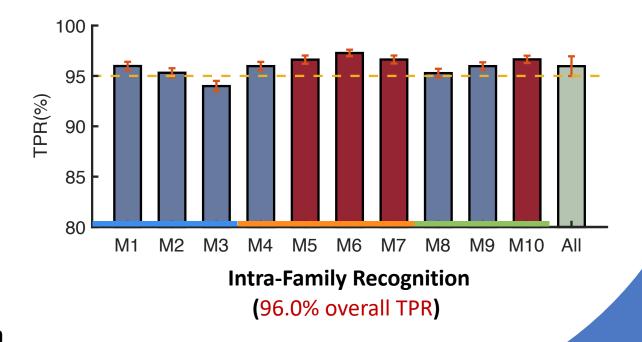


Table 2:	Collecte	d Tags
----------	----------	--------

#	MFR.	IC	Model	Size (mm^2) .	AMT.
M1		Monza 4QT	H47	50×50	2000
M2	Impinj	Monza R6	ER62	74 imes 18	2000
M3		Monza R6	AZ-H63	49×114	2000
M4		Higgs 3	9662	70×17	1000
M5	Alien	Higgs 3	9640	94.8×8.25	2000
M6		Higgs 3	9654	93 × 19	1000
M7		Higgs 9	9962	73.5×20.2	1000
M8		Ucode8	U9627	96×27	2000
M9	NXP	UR108	U7015	70×15	2000
M10		Ucode7	U5030	50×30	1000

Evaluation: Inter/Intra-family classification

M1	1000 10.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%	
M2	0 0.0%	1000 10.0%	6 0.1%	10 0.1%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	98.4% 1.6%	Impinj
M3	0 0.0%	0 0.0%	967 9.7%	7 0.1%	0 0.0%	0 0.0%	0 0.0%	4 0.0%	0 0.0%	6 0.1%	98.3% 1.7%	∠.
M4	0 0.0%	0 0.0%	3 0.0%	969 9.7%	0 0.0%	0 0.0%	0 0.0%	10 0.1%	0 0.0%	0 0.0%	98.7% 1.3%	
VIII M5	0 0.0%	0 0.0%	0 0.0%	0 0.0%	1000 10.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%	Alien
Output Family	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	1000 10.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%	
no _{M7}	0 0.0%	0 0.0%	21 0.2%	0 0.0%	0 0.0%	0 0.0%	1000 10.0%	1 0.0%	0 0.0%	0 0.0%	97.8% 2.2%	
M8	0 0.0%	0 0.0%	0 0.0%	14 0.1%	0 0.0%	0 0.0%	0 0.0%	937 9.4%	0 0.0%	23 0.2%	96.2% 3.8%	
M9	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	1000 10.0%	0 0.0%	100% 0.0%	NXP
M10	0 0.0%	0 0.0%	3 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	48 0.5%	0 0.0%	971 9.7%	95.0% 5.0%	
	100% 0.0%	100% 0.0%	96.7% 3.3%	96.9% 3.1%	100% 0.0%	100% 0.0%	100% 0.0%	93.7% 6.3%	100% 0.0%	97.1% 2.9%	98.4% 1.6%	
	W,	112	MS	N _V	N ⁵ Tar	ທ ^ତ ∵get Fan	_{اللم} nily	1/18	110	MO		

Confusion Matrix of Inter-Family Classification

(98.4% Precision)

Conclusion

- First introducing the **out-of-band backscatter response** as a powerful hardware **fingerprint** for the physical-layer identification of RFID tags
- Developing a novel **context-free extraction algorithm** to acquire RF-DNA from tags in real-world environments
- Taking advantage of two-phase **deep neural networks** and fully exploit the hidden information of RF-DNA
- Successfully extending the capability of physical layer identification to ten thousands of tags for the first time

Q&A Thank you!